Search results
Results from the WOW.Com Content Network
Caltech Tutorial on Relativity — A simple introduction to Einstein's Field Equations. The Meaning of Einstein's Equation — An explanation of Einstein's field equation, its derivation, and some of its consequences; Video Lecture on Einstein's Field Equations by MIT Physics Professor Edmund Bertschinger. Arch and scaffold: How Einstein found ...
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
If one is only interested in the weak field limit of the theory, the dynamics of matter can be computed using special relativity methods and/or Newtonian laws of gravity and then the resulting stress–energy tensor can be plugged into the Einstein field equations. But if the exact solution is required or a solution describing strong fields ...
This category lists exact solutions to the Einstein field equation, an equation used in general relativity to determine the curvature of spacetime. Note that the identification of solutions to this equation can be very difficult. Identified solutions are quite noteworthy within physics research.
In general relativity, a scalar field solution is an exact solution of the Einstein field equation in which the gravitational field is due entirely to the field energy and momentum of a scalar field. Such a field may or may not be massless, and it may be taken to have minimal curvature coupling, or some other choice, such as conformal coupling.
The initial value formulation of general relativity is a reformulation of Albert Einstein's theory of general relativity that describes a universe evolving over time.. Each solution of the Einstein field equations encompasses the whole history of a universe – it is not just some snapshot of how things are, but a whole spacetime: a statement encompassing the state of matter and geometry ...
The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...
In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress–energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical approximation to a nonzero vacuum energy.