enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymmetric hydrogenation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_hydrogenation

    Alkenes that are particularly amenable to asymmetric hydrogenation often feature a polar functional group adjacent to the site to be hydrogenated. In the absence of this functional group, catalysis often results in low ee's. For some unfunctionalized olefins, iridium with P,N-based ligands) have proven effective, however. Alkene substrates are ...

  3. Markovnikov's rule - Wikipedia

    en.wikipedia.org/wiki/Markovnikov's_rule

    Adding the hydrogen ion to one carbon atom in the alkene creates a positive charge on the other carbon, forming a carbocation intermediate. The more substituted the carbocation, the more stable it is, due to induction and hyperconjugation. The major product of the addition reaction will be the one formed from the more stable intermediate.

  4. Wilkinson's catalyst - Wikipedia

    en.wikipedia.org/wiki/Wilkinson's_catalyst

    Wilkinson's catalyst is best known for catalyzing the hydrogenation of olefins with molecular hydrogen. [ 11 ] [ 12 ] The mechanism of this reaction involves the initial dissociation of one or two triphenylphosphine ligands to give 14- or 12-electron complexes, respectively, followed by oxidative addition of H 2 to the metal.

  5. Enantioselective synthesis - Wikipedia

    en.wikipedia.org/wiki/Enantioselective_synthesis

    Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."

  6. Transfer hydrogenation - Wikipedia

    en.wikipedia.org/wiki/Transfer_hydrogenation

    Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO 2, acetone, or anthracene respectively. [1]

  7. Jacobsen's catalyst - Wikipedia

    en.wikipedia.org/wiki/Jacobsen's_catalyst

    However, as is the case with the overall mechanism, the pathway of alkene approach is also debated. [8] One proposed substrate approach pathway - Note: Substrates are perpendicular to the plane of the catalyst. The ease with which Jacobsen's catalyst selectively epoxidizes cis-alkenes has been difficult to replicate with terminal and trans ...

  8. Sharpless asymmetric dihydroxylation - Wikipedia

    en.wikipedia.org/wiki/Sharpless_asymmetric_di...

    K. Barry Sharpless was the first to develop a general, reliable enantioselective alkene dihydroxylation, referred to as the Sharpless asymmetric dihydroxylation (SAD). Low levels of OsO 4 are combined with a stoichiometric ferricyanide oxidant in the presence of chiral nitrogenous ligands to create an asymmetric environment around the oxidant.

  9. Frustrated Lewis pair - Wikipedia

    en.wikipedia.org/wiki/Frustrated_Lewis_pair

    Frustrated Lewis pairs of chiral alkenylboranes and phosphines are beneficial for asymmetric Piers-type hydrosilylations of 1,2-dicarbonyl compounds and alpha-keto esters, giving high yield and enantioselectivity. However, in comparison to conventional Piers-type hydrosilyations, asymmetric Piers-type hydrosilylations are not as well developed.