enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),

  3. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted ...

  4. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    E i is the Young's modulus along axis i; G ij is the shear modulus in direction j on the plane whose normal is in direction i; ν ij is the Poisson ratio that corresponds to a contraction in direction j when an extension is applied in direction i. The Poisson ratio of an orthotropic material is different in each direction (x, y and z). However ...

  5. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Pure shear stress is related to pure shear strain, denoted γ, by the equation [3] =, where G is the shear modulus of the isotropic material, given by = (+). Here, E is Young's modulus and ν is Poisson's ratio .

  6. Ogden hyperelastic model - Wikipedia

    en.wikipedia.org/wiki/Ogden_hyperelastic_model

    where is the shear modulus, which can be determined by experiments. From experiments it is known that for rubbery materials under moderate straining up to 30–70%, the Neo-Hookean model usually fits the material behaviour with sufficient accuracy.

  7. Sauerbrey equation - Wikipedia

    en.wikipedia.org/wiki/Sauerbrey_equation

    – Shear modulus of quartz for AT-cut crystal (= 2.947x10 11 g·cm −1 ·s −2) The normalized frequency is the nominal frequency shift of that mode divided by its mode number (most software outputs normalized frequency shift by default).

  8. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.

  9. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line. Unfortunately, that ...