Search results
Results from the WOW.Com Content Network
The X-53 Active Aeroelastic Wing (AAW) development program is a completed American research project that was undertaken jointly by the Air Force Research Laboratory (AFRL), Boeing Phantom Works and NASA's Dryden Flight Research Center, where the technology was flight tested on a modified McDonnell Douglas F/A-18 Hornet.
Aerodynamics is also important in the prediction of forces and moments acting on sailing vessels. It is used in the design of mechanical components such as hard drive heads. Structural engineers resort to aerodynamics, and particularly aeroelasticity, when calculating wind loads in the design of large buildings, bridges, and wind turbines.
The origins of the group go back to the experiments of physicist John P. Jackson, thermodynamicist Eric Jumper and photographer William Mottern in 1976. Using the ideas invented in aerospace science for building three dimensional models from images of Mars, Eric Jumper built initial devices to test the photographs of the Shroud of Turin.
Although the modern theory of aerodynamic science did not emerge until the 18th century, its foundations began to emerge in ancient times. The fundamental aerodynamics continuity assumption has its origins in Aristotle's Treatise on the Heavens, although Archimedes, working in the 3rd century BC, was the first person to formally assert that a fluid could be treated as a continuum. [1]
Project Echo was a pathfinder mission with the objective of testing new technologies and preparing for future missions. Spaceflight engineers used Echo to prove new ideas and test limits in aerodynamics, satellite shape and size, construction materials, temperature control and satellite tracking. [ 6 ]
The science of aerodynamics deals with the motion of air and the way that it interacts with objects in motion, such as an aircraft. The study of aerodynamics falls broadly into three areas: Incompressible flow occurs where the air simply moves to avoid objects, typically at subsonic speeds below that of sound (Mach 1).
Flight dynamics depends on the disciplines of propulsion, aerodynamics, and astrodynamics (orbital mechanics and celestial mechanics). It cannot be reduced to simply attitude control; real spacecraft do not have steering wheels or tillers like airplanes or ships.
Aerodynamics – Branch of dynamics concerned with studying the motion of air; Aircraft flight control system – How aircraft are controlled; Fixed-wing aircraft – Heavier-than-air aircraft with fixed wings generating aerodynamic lift; Flight control surfaces – Surface that allows a pilot to adjust and control an aircraft's flight attitude