Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events.
The discriminant of a polynomial is a function of its coefficients that is zero if and only if the polynomial has a multiple root, or, if it is divisible by the square of a non-constant polynomial. In other words, the discriminant is nonzero if and only if the polynomial is square-free.
(Although the factor −16 is irrelevant to whether or not the curve is non-singular, this definition of the discriminant is useful in a more advanced study of elliptic curves.) [2] The real graph of a non-singular curve has two components if its discriminant is positive, and one component if it is negative. For example, in the graphs shown in ...
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.
In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra features. [8] In September 2023, Desmos released a beta for a 3D calculator, which added features on top of the 2D calculator, including cross products, partial derivatives and double-variable parametric equations.
At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f .)
The real part of the discriminant as a function of the square of the nome q on the unit disk. The modular discriminant Δ is defined as the discriminant of the characteristic polynomial of the differential equation ℘ ′ 2 ( z ) = 4 ℘ 3 ( z ) − g 2 ℘ ( z ) − g 3 {\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}} as follows ...