enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charge density - Wikipedia

    en.wikipedia.org/wiki/Charge_density

    Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m −1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

  3. Linear density - Wikipedia

    en.wikipedia.org/wiki/Linear_density

    Consider a long, thin wire of charge and length .To calculate the average linear charge density, ¯, of this one dimensional object, we can simply divide the total charge, , by the total length, : ¯ = If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: = Each infinitesimal unit of charge, , is equal to ...

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The gauge-fixed potentials still have a gauge freedom under all gauge transformations that leave the gauge fixing equations invariant. Inspection of the potential equations suggests two natural choices. In the Coulomb gauge, we impose ∇ ⋅ A = 0, which is mostly used in the case of magneto statics when we can neglect the c −2 ∂ 2 A/∂t ...

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    By the relation between charge and charge density, this equation is equivalent to: = for any volume V. In order for this equation to be simultaneously true for every possible volume V , it is necessary (and sufficient) for the integrands to be equal everywhere.

  7. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    ε 0 is the permittivity of free ... at any point in space is equal to the product of the charge and the electric field at that ... is uniform linear charge density.

  8. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  9. Orders of magnitude (charge) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(charge)

    Charge on one mole of electrons (Faraday constant) [13] 10 5: 1.8 × 10 5 C: Automotive battery charge. 50Ah = 1.8 × 10 5 C: 10 6: mega-(MC) 10.72 × 10 6 C: Charge needed to produce 1 kg of aluminium from bauxite in an electrolytic cell [14] 10 7: 10 8: 5.9 × 10 8 C: Charge in world's largest battery bank (36 MWh), assuming 220 VAC output [15