Search results
Results from the WOW.Com Content Network
An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6] An object has rotational symmetry if the object can be rotated about a fixed point (or in 3D about a line) without changing the overall shape. [7]
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object
Bilateria (/ ˌ b aɪ l ə ˈ t ɪər i ə /) [5] is a large clade or infrakingdom of animals called bilaterians (/ ˌ b aɪ l ə ˈ t ɪər i ə n /), [6] characterised by bilateral symmetry (i.e. having a left and a right side that are mirror images of each other) during embryonic development.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
Convex and concave kites. A kite is a quadrilateral with reflection symmetry across one of its diagonals. Equivalently, it is a quadrilateral whose four sides can be grouped into two pairs of adjacent equal-length sides.
Animals mainly have bilateral or mirror symmetry, as do the leaves of plants and some flowers such as orchids. [30] Plants often have radial or rotational symmetry, as do many flowers and some groups of animals such as sea anemones. Fivefold symmetry is found in the echinoderms, the group that includes starfish, sea urchins, and sea lilies. [31]
In geometry, the [6,3], (*632) symmetry group is bounded by mirrors meeting with angles of 30, 60, and 90 degrees.There are a number of small index subgroups constructed by mirror removal and alternation. h[6,3] = [1 +,6,3] creates [3 [3]], (*333) symmetry, shown as red mirror lines.
For any symmetry group containing a glide reflection, the glide vector is one half of an element of the translation group. If the translation vector of a glide plane operation is itself an element of the translation group, then the corresponding glide plane symmetry reduces to a combination of reflection symmetry and translational symmetry.