Search results
Results from the WOW.Com Content Network
The g-force acting on an object in any weightless environment such as free-fall in a vacuum is 0 g. The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating.
The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
When an object's weight (its gravitational force) is expressed in "kilograms", this actually refers to the kilogram-force (kgf or kg-f), also known as the kilopond (kp), which is a non-SI unit of force. All objects on the Earth's surface are subject to a gravitational acceleration of approximately 9.8 m/s 2.
Around 1666 Isaac Newton developed the idea that Kepler's laws must also apply to the orbit of the Moon around the Earth and then to all objects on Earth. The analysis required assuming that the gravitation force acted as if all of the mass of the Earth were concentrated at its center, an unproven conjecture at that time.
This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1] = 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The relative standard uncertainty is 2.2 × 10 −5.
Maximum force of a molecular motor [8] 10 −11 10 −10 ~160 pN Force to break a typical noncovalent bond [8] 10 −9 nanonewton (nN) ~1.6 nN Force to break a typical covalent bond [8] 10 −8 ~82nN Force on an electron in a hydrogen atom [1] 10 −7 ~200nN Force between two 1 meter long conductors, 1 meter apart by an outdated definition of ...
Specific force (SF) is a mass-specific quantity defined as the quotient of force per unit mass. S F = F / m {\displaystyle \mathrm {SF} =F/m} It is a physical quantity of kind acceleration , with dimension of length per time squared and units of metre per second squared (m·s −2 ).