Search results
Results from the WOW.Com Content Network
An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 32-bit general-purpose registers and can operate on 32-bit items with a ...
For instance, a computer said to be "32-bit" also usually allows 32-bit memory addresses; a byte-addressable 32-bit computer can address 2 32 = 4,294,967,296 bytes of memory, or 4 gibibytes (GiB). This allows one memory address to be efficiently stored in one word. However, this does not always hold true.
In the simplest scheme, an address, or a numeric index, is assigned to each unit of memory in the system, where the unit is typically either a byte or a word – depending on whether the architecture is byte-addressable or word-addressable – effectively transforming all of memory into a very large array.
Compression algorithms often code in bitstreams, as the 8 bits offered by a byte (the smallest addressable unit of memory) may be wasteful. Although typically implemented in low-level languages, some high-level languages such as Python [1] and Java [2] offer native interfaces for bitstream I/O.
A memory address a is said to be n-byte aligned when a is a multiple of n (where n is a power of 2). In this context, a byte is the smallest unit of memory access, i.e. each memory address specifies a different byte. An n-byte aligned address would have a minimum of log 2 (n) least-significant zeros when expressed in binary.
The Cray X1 uses byte addressing with 64-bit addresses. It does not directly support memory accesses smaller than 64 bits, and such accesses must be emulated in software. The C compiler for the X1 was the first Cray compiler to support emulating 16-bit accesses. [1] The DEC Alpha uses byte addressing with 64-bit addresses. Early Alpha ...
The address and value parameters may contain expressions, as long as the evaluated expressions correspond to valid memory addresses or values, respectively.A valid address in this context is an address within the computer's address space, while a valid value is (typically) an unsigned value between zero and the maximum unsigned number that the minimum addressable unit (memory cell) may hold.
When byte processing is to be a significant part of the workload, it is usually more advantageous to use the byte, rather than the word, as the unit of address resolution. Address values which differ by one designate adjacent bytes in memory. This allows an arbitrary character within a character string to be addressed straightforwardly.