Search results
Results from the WOW.Com Content Network
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. [1] It is reported in energy units per unit time ranging from watt (joule/second) to ml O 2 /min or joule per hour per kg body mass J/(h·kg).
Kleiber's plot comparing body size to metabolic rate for a variety of species. [1]Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observations that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 3 ⁄ 4 power of the animal's mass.
The raw figure obtained by the equation should be adjusted up or downwards, within the confidence limit suggested by the quoted estimation errors, and according to the following principles: Subjects leaner and more muscular than usual require more energy than the average. Obese subjects require less. Patients at the young end of the age range ...
"nor does it account for the additional calories provided by excess body fat" This is wholly irrelevant. If one is provided with 100 calories per day by their body fat, then they must eat another 100 calories per day to maintain their body fat. The Harris-Benedict equation is for determining neutral energy balance.
The Benedict–Webb–Rubin equation (BWR), named after Manson Benedict, G. B. Webb, and L. C. Rubin, is an equation of state used in fluid dynamics.Working at the research laboratory of the M. W. Kellogg Company, the three researchers rearranged the Beattie–Bridgeman equation of state and increased the number of experimentally determined constants to eight.
Other interference may come from the buffer used when preparing the protein sample. A high concentration of buffer will cause an overestimated protein concentration due to depletion of free protons from the solution by conjugate base from the buffer. This will not be a problem if a low concentration of protein (subsequently the buffer) is used. [6]
First edition. Fat Chance: Probability from 0 to 1 is an introductory undergraduate-level textbook on probability theory, centered on the metaphor of games of chance. [1] It was written by Benedict Gross, Joe Harris, and Emily Riehl, based on a course for non-mathematicians taught to Harvard University undergraduates, and published by the Cambridge University Press in 2019.