Search results
Results from the WOW.Com Content Network
A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to provide extremely accurate measurements (in contrast with something like a simple voltage divider ). [ 1 ]
An unmounted resistive foil strain gauge. A strain gauge takes advantage of the physical property of electrical conductance and its dependence on the conductor's geometry. . When an electrical conductor is stretched within the limits of its elasticity such that it does not break or permanently deform, it will become narrower and longer, which increases its electrical resistance end-to-
Since the change in resistance measured by a single strain gauge is extremely small, it is difficult to accurately measure changes. Increasing the number of strain gauges applied collectively magnifies these small changes into something more measurable. A set of 4 strain gauges set in a specific circuit is an application of a Wheatstone bridge.
Through a mechanical arrangement, the force being sensed deforms a strain gauge. The strain gauge converts the deformation to electrical signals. A load cell usually consists of four strain gauges in a Wheatstone bridge configuration. Load cells of one strain gauge (quarter bridge) or two strain gauges (half bridge) are also available.
Sensor inputs can be accelerometer, thermocouple, thermistor, resistance thermometer, strain gauge or bridge, and LVDT or RVDT. Specialized inputs include encoder, counter or tachometer, timer or clock, relay or switch, and other specialized inputs. Outputs for signal conditioning equipment can be voltage, current, frequency, timer or counter ...
Strain gauges can be used to experimentally determine the deformation of a physical part. A commonly used type of strain gauge is a thin flat resistor that is affixed to the surface of a part, and which measures the strain in a given direction. From the measurement of strain on a surface in three directions the stress state that developed in ...
Four-point measurement of resistance between voltage sense connections 2 and 3. Current is supplied via force connections 1 and 4. In electrical engineering, four-terminal sensing (4T sensing), 4-wire sensing, or 4-point probes method is an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make more accurate measurements ...
Gauge factor (GF) or strain factor of a strain gauge is the ratio of relative change in electrical resistance R, to the mechanical strain ε. The gauge factor is defined as: [ 1 ] G F = Δ R / R Δ L / L = Δ R / R ε = 1 + 2 ν + Δ ρ / ρ ε {\displaystyle GF={\frac {\Delta R/R}{\Delta L/L}}={\frac {\Delta R/R}{\varepsilon }}=1+2\nu +{\frac ...