Search results
Results from the WOW.Com Content Network
t 2 = 6 is the modular multiplicative inverse of 5 × 11 (mod 7) and t 3 = 6 is the modular multiplicative inverse of 5 × 7 (mod 11). Thus, X = 3 × (7 × 11) × 4 + 6 × (5 × 11) × 4 + 6 × (5 × 7) × 6 = 3504. and in its unique reduced form X ≡ 3504 ≡ 39 (mod 385) since 385 is the LCM of 5,7 and 11. Also, the modular multiplicative ...
The modular multiplicative inverse is defined by the following rules: Existence: There exists an integer denoted a −1 such that aa −1 ≡ 1 (mod m) if and only if a is coprime with m. This integer a −1 is called a modular multiplicative inverse of a modulo m.
When R is a power of a small positive integer b, N′ can be computed by Hensel's lemma: The inverse of N modulo b is computed by a naïve algorithm (for instance, if b = 2 then the inverse is 1), and Hensel's lemma is used repeatedly to find the inverse modulo higher and higher powers of b, stopping when the inverse modulo R is known; N′ is ...
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
In such a field with m numbers, every nonzero element a has a unique modular multiplicative inverse, a −1 such that aa −1 = a −1 a ≡ 1 mod m. This inverse can be found by solving the congruence equation ax ≡ 1 mod m , [ 72 ] or the equivalent linear Diophantine equation [ 73 ]
The set {3,19} generates the group, which means that every element of (/) is of the form 3 a × 19 b (where a is 0, 1, 2, or 3, because the element 3 has order 4, and similarly b is 0 or 1, because the element 19 has order 2). Smallest primitive root mod n are (0 if no root exists)
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.
is an odd function, i.e. ℘ ′ = ℘ ′ (). [6] One of the main results of the theory of elliptic functions is the following: Every elliptic function with respect to a given period lattice Λ {\displaystyle \Lambda } can be expressed as a rational function in terms of ℘ {\displaystyle \wp } and ℘ ′ {\displaystyle \wp '} .