Search results
Results from the WOW.Com Content Network
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Multiplication algorithm. A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic. The oldest and simplest method, known since antiquity as long ...
The dot product of two rows of the same type is congruent to n (mod 4); the dot product of two rows of opposite type is congruent to n+2 (mod 4). When n ≡ 2 (mod 4), this implies that, by permuting rows of R, we may assume the standard form, = [], where A and D are symmetric integer matrices whose elements are congruent to 2 (mod 4) and B is ...
Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If q ≡ 1 (mod 4) then q is a quadratic residue (mod p) if and only if there exists some integer b such that p ≡ b 2 (mod q). If q ≡ 3 (mod 4) then q is a quadratic residue (mod p) if and only if there exists some integer b which is odd and not divisible by q such that p ≡ ±b 2 (mod 4q). This is equivalent to quadratic reciprocity.