Search results
Results from the WOW.Com Content Network
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.
It happens because of something called the Rayleigh effect, or Rayleigh scattering, named after a British scientist who first wrote about it in 1871. Bands of vivid blue, pink and orange light are ...
Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:
The Rayleigh sky model describes the observed polarization pattern of the daytime sky. Within the atmosphere, Rayleigh scattering of light by air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern. The same elastic scattering processes cause the sky to be blue.
Scattering and absorption are major causes of the attenuation of sunlight radiation by the atmosphere. Scattering varies as a function of the ratio of particle diameters (of particulates in the atmosphere) to the wavelength of the incident radiation. When this ratio is less than about one-tenth, Rayleigh scattering occurs. (In this case, the ...
The inherent scattering that radiation undergoes passing through a pure gas is due to microscopic density fluctuations as the gas molecules move around, which are normally small enough in scale for Rayleigh's model to apply. This scattering mechanism is the primary cause of the blue color of the Earth's sky on a clear day, as the shorter blue ...
There are two kinds of light scattering that lead to sky glow: scattering from molecules such as N 2 and O 2 (called Rayleigh scattering), and that from aerosols, described by Mie theory. Rayleigh scattering is much stronger for short-wavelength (blue) light, while scattering from aerosols is less affected by wavelength.
On a sunny day, Rayleigh scattering gives the sky a blue gradient, darkest around the zenith and brightest near the horizon. Light rays coming from the zenith take the shortest-possible path (1 ⁄ 38) through the air mass, yielding less scattering. Light rays coming from the horizon take the longest-possible path through the air, yielding more ...