Search results
Results from the WOW.Com Content Network
"Bulk flow" is the movement/flow of an entire body due to a pressure gradient (for example, water coming out of a tap). "Diffusion" is the gradual movement/dispersion of concentration within a body with no net movement of matter. An example of a process where both bulk motion and diffusion occur is human breathing. [2]
The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.
As mentioned above, passive diffusion is a spontaneous phenomenon that increases the entropy of a system and decreases the free energy. [5] The transport process is influenced by the characteristics of the transport substance and the nature of the bilayer. The diffusion velocity of a pure phospholipid membrane will depend on: concentration ...
An example of an antiporter mediated transport protein is the sodium-calcium antiporter, a transport protein involved in keeping the cytoplasmic concentration of calcium ions in the cells, low. This transport protein is an antiporter system because it transports three sodium ions across the plasma membrane in exchange for a calcium ion, which ...
Facilitated diffusion in cell membrane, showing ion channels and carrier proteins. Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembrane integral proteins. [1]
Passive diffusion across a cell membrane.. Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. [1] [2] Instead of using cellular energy, like active transport, [3] passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes.
Diffusion is also faster in smaller, lighter molecules of which helium is the extreme example. Diffusivity of helium is 2.65 times faster than nitrogen. [14] The partial pressure gradient, also known as the concentration gradient, can be used as a model for the driving mechanism of diffusion. The partial pressure gradient is the rate of ...
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...