Search results
Results from the WOW.Com Content Network
The trench capacitor is constructed by etching a deep hole into the silicon substrate. The substrate volume surrounding the hole is then heavily doped to produce a buried n + plate with low resistance. A layer of oxide-nitride-oxide dielectric is grown or deposited, and finally the hole is filled by depositing doped polysilicon, which forms the ...
Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory .
The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory (such as EPROM, EEPROM and flash memory) uses floating-gate memory cells, which consist of a single floating-gate transistor per ...
The two most common types of DRAM memory cells since the 1980s have been trench-capacitor cells and stacked-capacitor cells. [25] Trench-capacitor cells are where holes (trenches) are made in a silicon substrate, whose side walls are used as a memory cell, whereas stacked-capacitor cells are the earliest form of three-dimensional memory (3D ...
in DRAM memory circuits, capacitor trenches may be 10–20 μm deep, in MEMS, DRIE is used for anything from a few micrometers to 0.5 mm. in irregular chip dicing, DRIE is used with a novel hybrid soft/hard mask to achieve sub-millimeter etching to dice silicon dies into lego-like pieces with irregular shapes. [7] [8] [9]
A ferroelectric field-effect transistor (Fe FET) is a type of field-effect transistor that includes a ferroelectric material sandwiched between the gate electrode and source-drain conduction region of the device (the channel).
Capacitors used for suppressing undesirable frequencies are sometimes called filter capacitors. They are common in electrical and electronic equipment, and cover a number of applications, such as: Glitch removal on direct current (DC) power rails; Radio frequency interference (RFI) removal for signal or power lines entering or leaving equipment
Shallow trench isolation (STI), also known as box isolation technique, is an integrated circuit feature which prevents electric current leakage between adjacent semiconductor device components. STI is generally used on CMOS process technology nodes of 250 nanometers and smaller.