Search results
Results from the WOW.Com Content Network
For example, the probability that it lives longer than 5 hours, but shorter than (5 hours + 1 nanosecond), is (2 hour −1)×(1 nanosecond) ≈ 6 × 10 −13 (using the unit conversion 3.6 × 10 12 nanoseconds = 1 hour). There is a probability density function f with f(5 hours) = 2 hour −1.
If X n converges in probability to X, and if P(| X n | ≤ b) = 1 for all n and some b, then X n converges in rth mean to X for all r ≥ 1. In other words, if X n converges in probability to X and all random variables X n are almost surely bounded above and below, then X n converges to X also in any rth mean. [10] Almost sure representation ...
The beta-binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with heterogeneity in the success probability. The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because ...
In probability and statistics, the Irwin–Hall distribution, named after Joseph Oscar Irwin and Philip Hall, is a probability distribution for a random variable defined as the sum of a number of independent random variables, each having a uniform distribution. [1] For this reason it is also known as the uniform sum distribution.
If g is a general function, then the probability that g(X) is valued in a set of real numbers K equals the probability that X is valued in g −1 (K), which is given by (). Under various conditions on g , the change-of-variables formula for integration can be applied to relate this to an integral over K , and hence to identify the density of g ...
Let be a random variable that takes the value 0 with probability 1/2, and takes the value 1 with probability 1/2. Let Y {\displaystyle Y} be a random variable, independent of X {\displaystyle X} , that takes the value −1 with probability 1/2, and takes the value 1 with probability 1/2.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Then, the probability that this so-called unlikely event does not happen (improbability) in a single trial is 99.9% (0.999). For a sample of only 1,000 independent trials, however, the probability that the event does not happen in any of them, even once (improbability), is only [5] 0.999 1000 ≈ 0.3677, or 36.77%.