Search results
Results from the WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Excel offers many user interface tweaks over the earliest electronic spreadsheets; however, the essence remains the same as in the original spreadsheet software, VisiCalc: the program displays cells organized in rows and columns, and each cell may contain data or a formula, with relative or absolute references to other cells. Excel 2.0 for ...
Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)
When the computer calculates a formula in one cell to update the displayed value of that cell, cell reference(s) in that cell, naming some other cell(s), causes the computer to fetch the value of the named cell(s). A cell on the same "sheet" is usually addressed as: =A1 A cell on a different sheet of the same spreadsheet is usually addressed as:
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
The final digit of a Universal Product Code, International Article Number, Global Location Number or Global Trade Item Number is a check digit computed as follows: [3] [4]. Add the digits in the odd-numbered positions from the left (first, third, fifth, etc.—not including the check digit) together and multiply by three.
Let (,) = be a well-posed problem, i.e. : is a real or complex functional relationship, defined on the cross-product of an input data set and an output data set , such that exists a locally lipschitz function : called resolvent, which has the property that for every root (,) of , = ().