enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L-estimator - Wikipedia

    en.wikipedia.org/wiki/L-estimator

    For example, the midhinge minus the median is a 3-term L-estimator that measures the skewness, and other differences of midsummaries give measures of asymmetry at different points in the tail. [1] Sample L-moments are L-estimators for the population L-moment, and have rather complex expressions. L-moments are generally treated separately; see ...

  3. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.

  4. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    An estimator for the slope with approximately median rank, having the same breakdown point as the Theil–Sen estimator, may be maintained in the data stream model (in which the sample points are processed one by one by an algorithm that does not have enough persistent storage to represent the entire data set) using an algorithm based on ε-nets.

  5. Hodges–Lehmann estimator - Wikipedia

    en.wikipedia.org/wiki/Hodges–Lehmann_estimator

    In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The Theil–Sen estimator is a simple robust estimation technique that chooses the slope of the fit line to be the median of the slopes of the lines through pairs of sample points. It has similar statistical efficiency properties to simple linear regression but is much less sensitive to outliers .

  7. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .

  8. Repeated median regression - Wikipedia

    en.wikipedia.org/wiki/Repeated_median_regression

    In robust statistics, repeated median regression, also known as the repeated median estimator, is a robust linear regression algorithm. The estimator has a breakdown point of 50%. [ 1 ] Although it is equivariant under scaling, or under linear transformations of either its explanatory variable or its response variable, it is not under affine ...

  9. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    Analogously to how the median generalizes to the geometric median (GM) in multivariate data, MAD can be generalized to the median of distances to GM (MADGM) in n dimensions. This is done by replacing the absolute differences in one dimension by Euclidean distances of the data points to the geometric median in n dimensions. [5]