Search results
Results from the WOW.Com Content Network
Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.
This is done by replacing the absolute differences in one dimension by Euclidean distances of the data points to the geometric median in n dimensions. [5] This gives the identical result as the univariate MAD in one dimension and generalizes to any number of dimensions. MADGM needs the geometric median to be found, which is done by an iterative ...
Let random variable Q be the number of edges cut. To keep the conditional probability of failure below 1, it suffices to keep the conditional expectation of Q at or above the threshold |E|/2. This is because, as long as the conditional expectation of Q is at least |E|/2, there must be some still-reachable outcome where Q is at least |E|/2, so ...
The Theil–Sen estimator is a simple robust estimation technique that chooses the slope of the fit line to be the median of the slopes of the lines through pairs of sample points. It has similar statistical efficiency properties to simple linear regression but is much less sensitive to outliers .
For example, the midhinge minus the median is a 3-term L-estimator that measures the skewness, and other differences of midsummaries give measures of asymmetry at different points in the tail. [1] Sample L-moments are L-estimators for the population L-moment, and have rather complex expressions. L-moments are generally treated separately; see ...
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .
An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.