enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular ...

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.

  4. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula. A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠ ⁠ ⁠ ⁠ ⁠ ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, the area ⁠ ⁠ is [1] It is named after first-century engineer Heron of Alexandria (or Hero) who ...

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero- dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of ...

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Law of cosines. Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite ...

  7. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in 1899. [2] It was popularized in English by Hugo Steinhaus in the 1950 edition of his book Mathematical ...

  8. Apollonius's theorem - Wikipedia

    en.wikipedia.org/wiki/Apollonius's_theorem

    green area = red area. In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side.

  9. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    The area of the triangle is times the length of any side times the perpendicular distance from the side to the centroid. [15] A triangle's centroid lies on its Euler line between its orthocenter and its circumcenter, exactly twice as close to the latter as to the former: [16] [17]