Search results
Results from the WOW.Com Content Network
In the field of statistical physics, a non-formal reformulation of the relation above between the derivative of the cumulative distribution function and the probability density function is generally used as the definition of the probability density function. This alternate definition is the following:
If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies = (/) /, where f is the density of a standardized version of the density, i.e. () = ().
In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as ...
For k > 1, the density function tends to zero as x approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at x = 0 if 0 < k < 1, infinite positive slope at x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 1 the density has a finite negative slope at x = 0.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
The number density (symbol: n or ρ N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density.
Any probability density function integrates to , so the probability density function of the continuous uniform distribution is graphically portrayed as a rectangle where is the base length and is the height. As the base length increases, the height (the density at any particular value within the distribution boundaries) decreases.
In the 2-dimensional case, if the density exists, each iso-density locus (the set of x 1,x 2 pairs all giving a particular value of ()) is an ellipse or a union of ellipses (hence the name elliptical distribution). More generally, for arbitrary n, the iso-density loci are unions of ellipsoids. All these ellipsoids or ellipses have the common ...