Search results
Results from the WOW.Com Content Network
In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
Two types of convective heat transfer may be distinguished: Free or natural convection: when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal ±temperature in the fluid. In the absence of an internal source, when the fluid is in contact with a hot surface, its molecules separate and ...
Surface heat loss may be reduced by insulation of the body surface. Heat is produced internally by metabolic processes and may be supplied from external sources by active heating of the body surface or the breathing gas. [2] Radiation heat loss is usually trivial due to small temperature differences, conduction and convection are the major ...
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [ 10 ]
Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of free convection heat transfer make it necessary to mainly use empirical relations from experimental data. [12] Heat transfer is analyzed in packed beds, nuclear reactors and heat exchangers.
Without gravity, convection does not occur, so there is no convection in free-fall environments, such as that of the orbiting International Space Station. Natural convection can occur when there are hot and cold regions of either air or water, because both water and air become less dense as they are heated.
The ratio of the Grashof number to the square of the Reynolds number may be used to determine if forced or free convection may be neglected for a system, or if there's a combination of the two. This characteristic ratio is known as the Richardson number (Ri). If the ratio is much less than one, then free convection may be ignored.