Search results
Results from the WOW.Com Content Network
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
Faraday discovered that when the same amount of electric current is passed through different electrolytes connected in series, the masses of the substances deposited or liberated at the electrodes are directly proportional to their respective chemical equivalent/equivalent weight (E). [3]
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Solvated electrons are involved in the reaction of alkali metals with water, even though the solvated electron has only a fleeting existence. [10] Below pH = 9.6 the hydrated electron reacts with the hydronium ion giving atomic hydrogen, which in turn can react with the hydrated electron giving hydroxide ion and usual molecular hydrogen H 2. [11]
Electronic stopping refers to the slowing down of a projectile ion due to the inelastic collisions between bound electrons in the medium and the ion moving through it. The term inelastic is used to signify that energy is lost during the process (the collisions may result both in excitations of bound electrons of the medium, and in excitations of the electron cloud of the ion as well).
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
F is the Faraday constant (the charge per mole of electrons), equal to 96,485.3 coulomb·mol −1; p 0 is the standard pressure: 1 bar = 10 5 Pa; Note: as the system is at chemical equilibrium, hydrogen gas, H 2 (g), is also in equilibrium with dissolved hydrogen, H 2 (aq), and the Nernst equation implicitly takes into account the Henry's law for