enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct-sequence spread spectrum - Wikipedia

    en.wikipedia.org/.../Direct-sequence_spread_spectrum

    Direct-sequence spread-spectrum transmissions multiply the symbol sequence being transmitted with a spreading sequence that has a higher rate than the original message rate. Usually, sequences are chosen such that the resulting spectrum is spectrally white. Knowledge of the same sequence is used to reconstruct the original data at the receiving ...

  3. Chip (CDMA) - Wikipedia

    en.wikipedia.org/wiki/Chip_(CDMA)

    In a binary direct-sequence system, each chip is typically a rectangular pulse of +1 or −1 amplitude, which is multiplied by a data sequence (similarly +1 or −1 representing the message bits) and by a carrier waveform to make the transmitted signal. The chips are therefore just the bit sequence out of the code generator; they are called ...

  4. Pseudorandom noise - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_noise

    Unlike random noise, it must be easy to generate exactly the same sequence at both the transmitter and the receiver, so the receiver's locally generated sequence has a very high correlation with the transmitted sequence. In a direct-sequence spread spectrum system, each bit in the pseudorandom binary sequence is known as a chip and the inverse ...

  5. Spread spectrum - Wikipedia

    en.wikipedia.org/wiki/Spread_spectrum

    Moreover, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bitrate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower — often ...

  6. Barker code - Wikipedia

    en.wikipedia.org/wiki/Barker_code

    Barker codes of length N equal to 11 and 13 are used in direct-sequence spread spectrum and pulse compression radar systems because of their low autocorrelation properties (the sidelobe level of amplitude of the Barker codes is 1/N that of the peak signal). [15]

  7. IEEE 802.15.4 - Wikipedia

    en.wikipedia.org/wiki/IEEE_802.15.4

    In August 2007, IEEE 802.15.4a was released expanding the four PHYs available in the earlier 2006 version to six, including one PHY using direct sequence ultra-wideband (UWB) and another using chirp spread spectrum (CSS). The UWB PHY is allocated frequencies in three ranges: below 1 GHz, between 3 and 5 GHz, and between 6 and 10 GHz.

  8. Multi-carrier code-division multiple access - Wikipedia

    en.wikipedia.org/wiki/Multi-carrier_code...

    K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX, 2nd Edition, John Wiley & Sons, 2008, ISBN 978-0-470-99821-2. Hughes Software Systems, Multi Carrier Code Division Multiple Access, March 2002.

  9. Joint Tactical Information Distribution System - Wikipedia

    en.wikipedia.org/wiki/Joint_Tactical_Information...

    There are benefits to the full-scale implementation of the two key elements of Link-16: (1) the message "catalog" and (2) the specific radio waveform (i.e., frequency hopped, Lx-band CPSM, spread-spectrum and Reed–Solomon coding, omni-directional broadcast). Link 16 terminals implement the "NI" node-to-node protocols as well as one or more of ...