Search results
Results from the WOW.Com Content Network
When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.
A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction.
A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called unoriented. In mathematics , orientability is a broader notion that, in two dimensions, allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left ...
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space. [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.
A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction.
In viewing a tensor as a multilinear map, it is conventional to identify the double dual V ∗∗ of the vector space V, i.e., the space of linear functionals on the dual vector space V ∗, with the vector space V. There is always a natural linear map from V to its double dual, given by evaluating a linear form in V ∗ against a vector in V.