Search results
Results from the WOW.Com Content Network
The nuclear envelope, also known as the nuclear membrane, [1] [a] is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material. The nuclear envelope consists of two lipid bilayer membranes: an inner nuclear membrane and an outer nuclear membrane. [ 4 ]
It is enclosed by the nuclear envelope, also known as the nuclear membrane. [2] The nucleoplasm resembles the cytoplasm of a eukaryotic cell in that it is a gel-like substance found within a membrane, although the nucleoplasm only fills out the space in the nucleus and has its own unique functions.
The nucleus is spherical and separated from the cytoplasm by a double membrane called the nuclear envelope, space between these two membrane is called perinuclear space. The nuclear envelope isolates and protects a cell's DNA from various molecules that could accidentally damage its structure or interfere with its processing.
The cell nucleus (from Latin nucleus or nuculeus 'kernel, seed'; pl.: nuclei) is a membrane-bound organelle found in eukaryotic cells.Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many.
The nucleus is surrounded by a double membrane known as the nuclear envelope, with nuclear pores that allow material to move in and out. [25] Various tube- and sheet-like extensions of the nuclear membrane form the endoplasmic reticulum , which is involved in protein transport and maturation.
Since the nuclear pores are located in an area of high traffic, they play an important role in cell physiology. The space between the outer and inner membranes is called the perinuclear space and is joined with the lumen of the rough ER. The nuclear envelope's structure is determined by a network of intermediate filaments (protein filaments).
The nuclear lamina consists of two components, lamins and nuclear lamin-associated membrane proteins. The lamins are type V intermediate filaments which can be categorized as either A-type (lamin A, C) or B-type (lamin B 1, B 2) according to homology of their DNA sequences, biochemical properties and cellular localization during the cell cycle.
In terms of protein synthesis, the necessary organelles are relatively near one another. The nucleolus within the nuclear envelope is the location of ribosome synthesis. The destination of synthesized ribosomes for protein translation is rough endoplasmic reticulum (rough ER), which is connected to and shares the same membrane with the nucleus.