Search results
Results from the WOW.Com Content Network
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
scikit-learn – extends SciPy with a host of machine learning models (classification, clustering, regression, etc.) Shogun (toolbox) – open-source, large-scale machine learning toolbox that provides several SVM (Support Vector Machine) implementations (like libSVM, SVMlight) under a common framework and interfaces to Octave, MATLAB, Python, R
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Semi-log plot of the Internet host count over time shown on a logarithmic scale. A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved.
The blue picture illustrates an example of fitting the log-logistic distribution to ranked maximum one-day October rainfalls and it shows the 90% confidence belt based on the binomial distribution. The rainfall data are represented by the plotting position r/(n+1) as part of the cumulative frequency analysis.
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
In this example, deep learning generates a model from training data that is generated with the function (). An artificial neural network with three layers is used for this example. The first layer is linear, the second layer has a hyperbolic tangent activation function, and the third layer is linear.
A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then