enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pressure drop - Wikipedia

    en.wikipedia.org/wiki/Pressure_drop

    Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe , or tube ).

  3. Reduced properties - Wikipedia

    en.wikipedia.org/wiki/Reduced_properties

    In thermodynamics, the reduced properties of a fluid are a set of state variables scaled by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor , provide the basis for the simplest form of the theorem of corresponding states .

  4. Ergun equation - Wikipedia

    en.wikipedia.org/wiki/Ergun_equation

    To calculate the pressure drop in a given reactor, the following equation may be deduced: ... Water Science and Technology: Water Supply, Vol:1, Issue:2, pp. 65–72 ...

  5. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that pressure must be proportional to the length of the pipe between the two points L as the pressure drop per unit length is a constant.

  7. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. Subsequently, the mass flow rate decreases during the ...

  8. Kozeny–Carman equation - Wikipedia

    en.wikipedia.org/wiki/Kozeny–Carman_equation

    The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman.

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.