enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The Nusselt number is the ratio of total heat transfer (convection + conduction) to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case.

  3. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    The Churchill–Bernstein equation is valid for a wide range of Reynolds numbers and Prandtl numbers, as long as the product of the two is greater than or equal to 0.2, as defined above. The Churchill–Bernstein equation can be used for any object of cylindrical geometry in which boundary layers develop freely, without constraints imposed by ...

  4. Prandtl number - Wikipedia

    en.wikipedia.org/wiki/Prandtl_number

    The Prandtl numbers for water (1 bar) can be determined in the temperature range between 0 °C and 90 °C using the formula given below. [2] The temperature is to be used in the unit degree Celsius. The deviations are a maximum of 1% from the literature values.

  5. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]

  6. Stanton number - Wikipedia

    en.wikipedia.org/wiki/Stanton_number

    The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. Sherwood number - Wikipedia

    en.wikipedia.org/wiki/Sherwood_number

    The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate ( convection + diffusion) to the rate of diffusive mass transport, [ 1 ] and is named in honor of Thomas Kilgore Sherwood .

  9. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    In the situation of laminar flow in circular tubes, several dimensionless numbers are used such as Nusselt number, Reynolds number, and Prandtl number. The commonly used equation is =. Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of free convection heat transfer make it necessary to mainly use ...