Search results
Results from the WOW.Com Content Network
The relationship is represented by the equation: = where L ⊙ and M ⊙ are the luminosity and mass of the Sun and 1 < a < 6. [2] The value a = 3.5 is commonly used for main-sequence stars. [ 3 ] This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2 M ⊙ < M < 55 M ⊙ and does not apply to red giants ...
Mass-to-light ratios in application can be used to gain insight into the dark matter content and dust extinction in a galaxy. [4] Historically, rotation curves for spiral galaxies have been used to study galaxies, but mass-to-light ratios prove more accurate as a method of measuring mass. [5]
The Tully–Fisher relation for spiral and lenticular galaxies. In astronomy, the Tully–Fisher relation (TFR) is a widely verified empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. Since the observed brightness of a galaxy is distance-dependent, the ...
Henrietta Swan Leavitt (/ ˈ l ɛ v ɪ t /; July 4, 1868 – December 12, 1921) was an American astronomer. [2] [1] [3] Her discovery of how to effectively measure vast distances to remote galaxies led to a shift in the scale and understanding of the scale and the nature of the universe. [4]
A preliminary description of the three areas of this diagram was made in 2003 by Eric F. Bell et al. from the COMBO-17 survey [1] that clarified the bimodal distribution of red and blue galaxies as seen in the analysis of Sloan Digital Sky Survey data [2] and even in de Vaucouleurs's 1961 analyses of galaxy morphology. [3]
Therefore, the stellar luminosity function is used to derive a mass function (a present-day mass function, PDMF) by applying mass–luminosity relation. [2] The luminosity function requires accurate determination of distances, and the most straightforward way is by measuring stellar parallax within 20 parsecs from the earth.
The best-fit value of n correlates with galaxy size and luminosity, such that bigger and brighter galaxies tend to be fit with larger n. [ 5 ] [ 6 ] Setting n = 4 gives the de Vaucouleurs profile : I ( R ) ∝ e − b R 1 / 4 {\displaystyle I(R)\propto e^{-bR^{1/4}}} which is a rough approximation of ordinary elliptical galaxies .
Earlier work demonstrated a relationship between galaxy luminosity and black hole mass, [7] which nowadays has a comparable level of scatter. [ 8 ] [ 9 ] The M – σ relation is generally interpreted as implying some source of mechanical feedback between the growth of supermassive black holes and the growth of galaxy bulges, although the ...