enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photocatalytic water splitting - Wikipedia

    en.wikipedia.org/wiki/Photocatalytic_water_splitting

    The process of water-splitting is a highly endothermic process (ΔH > 0). Water splitting occurs naturally in photosynthesis when the energy of four photons is absorbed and converted into chemical energy through a complex biochemical pathway (Dolai's or Kok's S-state diagrams). [3] O–H bond homolysis in water requires energy of 6.5 - 6.9 eV ...

  3. Photodissociation - Wikipedia

    en.wikipedia.org/wiki/Photodissociation

    Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.

  4. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy. A version of water splitting occurs in photosynthesis, but hydrogen is not produced. The reverse of water splitting is the basis of the hydrogen fuel cell. Water splitting using solar radiation has not been commercialized.

  5. Oxygen-evolving complex - Wikipedia

    en.wikipedia.org/wiki/Oxygen-evolving_complex

    S 4 reacts with water producing free oxygen: 2 H 2 O → O 2 + 4 H + + 4 e −. This conversion resets the catalyst to the S 0 state. The active site of the OEC consists of a cluster of manganese and calcium with the formula Mn 4 Ca 1 O x Cl 1–2 (HCO 3) y. This cluster is bound to D 1 and CP 43 subunits and stabilized by peripheral membrane ...

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The high-energy oxidized tyrosine gives off its energy and returns to the ground state by taking up a proton and removing an electron from the oxygen-evolving complex and ultimately from water. [4] Kok's S-state diagram shows the reactions of water splitting in the oxygen-evolving complex.

  7. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .

  8. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Photosystem II obtains electrons by oxidizing water in a process called photolysis. Molecular oxygen is a byproduct of this process, and it is this reaction that supplies the atmosphere with oxygen. The fact that the oxygen from green plants originated from water was first deduced by the Canadian-born American biochemist Martin David Kamen.

  9. Photorespiration - Wikipedia

    en.wikipedia.org/wiki/Photorespiration

    2 is approximately 500 times more abundant, and in solution O 2 is 25 times more abundant than CO 2. [5] The ability of RuBisCO to specify between the two gases is known as its selectivity factor (or Srel), and it varies between species, [5] with angiosperms more efficient than other plants, but with little variation among the vascular plants. [6]