enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrode potential - Wikipedia

    en.wikipedia.org/wiki/Electrode_potential

    To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.

  3. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°, where z electrons are transferred, and the Faraday constant F is the conversion factor describing Coulombs transferred per mole electrons. Those Gibbs free energy ...

  4. Standard hydrogen electrode - Wikipedia

    en.wikipedia.org/wiki/Standard_hydrogen_electrode

    During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".

  5. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".

  6. Absolute electrode potential - Wikipedia

    en.wikipedia.org/wiki/Absolute_electrode_potential

    The absolute electrode potential is then defined as the Gibbs free energy for the absolute electrode process. To express this in volts one divides the Gibbs free energy by the negative of Faraday's constant. Rockwood's approach to absolute-electrode thermodynamics is easily expendable to other thermodynamic functions.

  7. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The black energy curve shows the increase in Gibbs energy as a reduced molecule moves closer to the electrode. The two energy curves intersect at Δ G ∗ ( 0 ) {\displaystyle \Delta G^{*}(0)} . Applying a potential E to the electrode will move the energy curve downward [ Note 3 ] (to the red curve) by nFE and the intersection point will move ...

  8. Electrocatalyst - Wikipedia

    en.wikipedia.org/wiki/Electrocatalyst

    In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. [36] [37] The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the standard hydrogen electrode (SHE). [38]

  9. Latimer diagram - Wikipedia

    en.wikipedia.org/wiki/Latimer_diagram

    Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction. The sum of the Gibbs energy changes for subsequent reductions (e.g. from O 2 to H 2 O 2, then from H 2 O 2 to H 2 O) is the same as the Gibbs energy change for the overall reduction (i.e. from O 2 to H 2 O), in accordance ...