Search results
Results from the WOW.Com Content Network
Worst-case space complexity O ( n ) {\displaystyle O(n)} (basic algorithm) In logic and computer science , the Davis–Putnam–Logemann–Loveland ( DPLL ) algorithm is a complete , backtracking -based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form , i.e. for solving the CNF-SAT problem.
Worst-case analysis is the analysis of a device (or system) that assures that the device meets its performance specifications. These are typically accounting for tolerances that are due to initial component tolerance, temperature tolerance, age tolerance and environmental exposures (such as radiation for a space device).
But given a worst-case input, its performance degrades to O(n 2). Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements.
Differential privacy (DP) is a mathematically rigorous framework for releasing statistical information about datasets while protecting the privacy of individual data subjects. It enables a data holder to share aggregate patterns of the group while limiting information that is leaked about specific individuals.
Whereas the fail-stop failure mode simply means that the only way to fail is a node crash, detected by other nodes, Byzantine failures imply no restrictions on what errors can be created, which means that a failed node can generate arbitrary data, including data that makes it appear like a functioning node to a subset of other nodes. Thus ...
They show that next-fit-increasing bin packing attains an absolute worst-case approximation ratio of at most 7/4, and an asymptotic worst-case ratio of 1.691 for any concave and monotone cost function. Cohen, Keller, Mirrokni and Zadimoghaddam [49] study a setting where the size of the items is not known in advance, but it is a random variable.
The resolution step leads to a worst-case exponential blow-up in the size of the formula. The Davis–Putnam–Logemann–Loveland algorithm is a 1962 refinement of the propositional satisfiability step of the Davis–Putnam procedure which requires only a linear amount of memory in the worst case.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.