enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.

  3. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  4. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    The Minkowski Sum of Two Triangles and The Minkowski Sum of a Disk and a Polygon by George Beck, The Wolfram Demonstrations Project. Minkowski's addition of convex shapes by Alexander Bogomolny: an applet; Wikibooks:OpenSCAD User Manual/Transformations#minkowski by Marius Kintel: Application; Application of Minkowski Addition to robotics by ...

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Minkowski problem for polytopes - Wikipedia

    en.wikipedia.org/wiki/Minkowski_problem_for_poly...

    The sets of vectors representing two polytopes can be added by taking the union of the two sets and, when the two sets contain parallel vectors with the same sign, replacing them by their sum. The resulting operation on polytope shapes is called the Blaschke sum .

  8. Introduction to the mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_the...

    In general relativity, four-dimensional vectors, or four-vectors, are required. These four dimensions are length, height, width and time. A "point" in this context would be an event, as it has both a location and a time. Similar to vectors, tensors in relativity require four dimensions. One example is the Riemann curvature tensor.

  9. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    The illustration in the middle of the diagram shows two parallel actual forces. After vector addition "at the location of ", the net force is translated to the appropriate line of application, where it becomes the resultant force . The procedure is based on decomposition of all forces into components for which the lines of application (pale ...