Search results
Results from the WOW.Com Content Network
The trigonometric definition gives an explicit formula as follows: = () ... Both T n and U n form a sequence of orthogonal polynomials.
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
Explicit formula can refer to: Closed-form expression, a mathematical expression in terms of a finite number of well-known functions; Analytical expression, ...
Find recurrence relations for sequences—the form of a generating function may suggest a recurrence formula. Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves may be related. Explore the asymptotic behaviour of sequences. Prove identities involving sequences.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
But even without specifying this explicit solution, it is possible to refer to the implicit solution of the unit circle equation as y = f(x), where f is the multi-valued implicit function. While explicit solutions can be found for equations that are quadratic , cubic , and quartic in y , the same is not in general true for quintic and higher ...
This definition covers several different uses of the word "sequence", including one-sided infinite sequences, bi-infinite sequences, and finite sequences (see below for definitions of these kinds of sequences). However, many authors use a narrower definition by requiring the domain of a sequence to be the set of natural numbers. This narrower ...
All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include: