Search results
Results from the WOW.Com Content Network
For example, let the design effect, for estimating the population mean based on some sampling design, be 2. If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random ...
Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery". A stated confidence level generally applies only to each test considered individually, but often it is desirable to have a confidence level for the whole family of simultaneous tests. [4]
In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks) based on one or more variables. These variables are chosen carefully to minimize the effect of their variability on the observed outcomes.
For example, a comparison of a spreadsheet cost construction model run using traditional "what if" scenarios, and then running the comparison again with Monte Carlo simulation and triangular probability distributions shows that the Monte Carlo analysis has a narrower range than the "what if" analysis. [example needed] This is because the "what ...
A statistical diagram of a simple moderation model. Moderation analysis in the behavioral sciences involves the use of linear multiple regression analysis or causal modelling. [1] To quantify the effect of a moderating variable in multiple regression analyses, regressing random variable Y on X, an additional term
Response surface methodology uses statistical models, and therefore practitioners need to be aware that even the best statistical model is an approximation to reality. In practice, both the models and the parameter values are unknown, and subject to uncertainty on top of ignorance.
The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to ...