Search results
Results from the WOW.Com Content Network
The solution principles outlined here also apply to phasor analysis of AC circuits. Two circuits are said to be equivalent with respect to a pair of terminals if the voltage across the terminals and current through the terminals for one network have the same relationship as the voltage and current at the terminals of the other network.
GNU Circuit Analysis Package (Gnucap) is a general purpose circuit simulator started by Albert Davis [1] in 1993. [2] It is part of the GNU Project. [3] The latest stable version is 0.35 from 2006. The latest development snapshot (as of July 2023) is from June 2023 and is usable.
The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage. [ 1 ] [ 2 ] The usual waveform of alternating current in most electric power circuits is a sine wave , whose positive half-period corresponds with positive direction of the current and vice versa (the full ...
In electronics, it is common to refer to a circuit that is powered by a DC voltage source such as a battery or the output of a DC power supply as a DC circuit even though what is meant is that the circuit is DC powered. In a DC circuit, a power source (e.g. a battery, capacitor, etc.) has a positive and negative terminal, and likewise, the load ...
A non-ideal DC voltage waveform can be viewed as a composite of a constant DC component (offset) with an alternating (AC) voltage—the ripple voltage—overlaid. The ripple component is often small in magnitude relative to the DC component, but in absolute terms, ripple (as in the case of HVDC transmission systems) may be thousands of volts.
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
Select capacitor C 2, replace it by a test voltage V X, and replace C 1 by an open circuit. Then the resistance seen by the test voltage is found using the circuit in the middle panel of Figure 1 and is simply V X / I X = R 1 + R 2. Form the product C 2 ( R 1 + R 2). Select capacitor C 1, replace it by a test voltage V X, and replace C 2 by an open
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...