Search results
Results from the WOW.Com Content Network
Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Single cell epigenomics is the study of epigenomics (the complete set of epigenetic modifications on the genetic material of a cell) in individual cells by single cell sequencing. [2] [1] [3] Since 2013, methods have been created including whole-genome single-cell bisulfite sequencing to measure DNA methylation, whole-genome ChIP-sequencing to ...
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
G&T-seq (short for single cell genome and transcriptome sequencing) is a novel form of single cell sequencing technique allowing one to simultaneously obtain both transcriptomic and genomic data from single cells, allowing for direct comparison of gene expression data to its corresponding genomic data in the same cell...
A list of more than 100 different single cell sequencing (omics) methods have been published. [1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.
A unique barcode sequence used on the cell hashing antibody can be designed to be different from an antibody barcode present on the ADTs used in CITE-seq. This makes it possible to couple cell hashing with CITE-seq on a single sequencing run. [12] Cell hashing allows super-loading of the scRNA-seq platform, resulting in a lower cost of sequencing.
After successfully transduced cells have been selected for, isolation of single cells is needed to conduct scRNA-seq. Perturb-seq and CROP-seq have been performed using droplet-based technology for single cell isolation, [1] [2] [3] while the closely related CRISP-seq was performed with a microwell-based approach. [4] Once cells have been ...