Search results
Results from the WOW.Com Content Network
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes. (previous page)
Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas. [2] [3] [4] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic ...
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [ 1 ] : 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
The Python code below assumes the input graph is given as a -adjacency matrix with zeros on the diagonal. It defines the function APD which returns a matrix with entries D i , j {\displaystyle D_{i,j}} such that D i , j {\displaystyle D_{i,j}} is the length of the shortest path between the vertices i {\displaystyle i} and j {\displaystyle j} .
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
The algorithm considers two problems: the master problem and the subproblem. The master problem is the original problem with only a subset of variables being considered. The subproblem is a new problem created to identify an improving variable (i.e. which can improve the objective function of the master problem). The algorithm then proceeds as ...
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
special designs based on mathematical hardness assumptions: examples include the Micali–Schnorr generator, [18] Naor-Reingold pseudorandom function and the Blum Blum Shub algorithm, which provide a strong security proof (such algorithms are rather slow compared to traditional constructions, and impractical for many applications)