enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  3. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    A sphere of radius r has area element = ⁡. This can be found from the volume element in spherical coordinates with r held constant. [9] A sphere of any radius centered at zero is an integral surface of the following differential form: + + =

  5. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The formula for the volume of the ⁠ ⁠-ball can be derived from this by integration. Similarly the surface area element of the ⁠ ⁠-sphere of radius ⁠ ⁠, which generalizes the area element of the ⁠ ⁠-sphere, is given by

  6. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    For that reason, in cartography and geodesy the Earth is often approximated by an oblate spheroid, known as the reference ellipsoid, instead of a sphere. The current World Geodetic System model uses a spheroid whose radius is 6,378.137 km (3,963.191 mi) at the Equator and 6,356.752 km (3,949.903 mi) at the poles.

  7. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...

  8. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  9. Unit sphere - Wikipedia

    en.wikipedia.org/wiki/Unit_sphere

    The surface area of an ()-sphere with radius is and the volume of an - ball with radius is . For instance, the area is A 2 = 4 π r 2 {\displaystyle A_{2}=4\pi r^{2}} for the two-dimensional surface of the three-dimensional ball of radius r . {\displaystyle r.}