Search results
Results from the WOW.Com Content Network
The barn (b) is a unit of area used in nuclear physics equal to one hundred femtometres squared (100 fm 2 = 10 −28 m 2). The are (a) is a unit of area equal to 100 m 2. The decare (daa) is a unit of area equal to 1000 m 2. The hectare (ha) is a unit of area equal to 10 000 m 2 (0.01 km 2).
square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2) capacitance: farad (F) heat capacity
1 km 2 means one square kilometre, or the area of a square of 1000 m by 1000 m. In other words, an area of 1 000 000 square metres and not 1000 square metres. 2 Mm 3 means two cubic megametres, or the volume of two cubes of 1 000 000 m by 1 000 000 m by 1 000 000 m, i.e. 2 × 10 18 m 3, and not 2 000 000 cubic metres (2 × 10 6 m 3).
The millimetre (SI symbol: mm) is a unit of length in the metric system equal to 10 −3 metres ( 1 / 1 000 m = 0.001 m). To help compare different orders of magnitude, this section lists lengths between 10 −3 m and 10 −2 m (1 mm and 1 cm). 1.0 mm – 1/1,000 of a meter; 1.0 mm – 0.03937 inches or 5/127 (exactly)
The International System of Units, internationally known by the abbreviation SI (from French Système international d'unités), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science ...
Portrait of Anders Ångström [15]. In 1868, Swedish physicist Anders Jonas Ångström created a chart of the spectrum of sunlight, in which he expressed the wavelengths of electromagnetic radiation in the electromagnetic spectrum in multiples of one ten-millionth of a millimetre (or 10 −7 mm.) [16] [17] Ångström's chart and table of wavelengths in the solar spectrum became widely used in ...
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).
M 2 is useful because it reflects how well a collimated laser beam can be focused to a small spot, or how well a divergent laser source can be collimated. It is a better guide to beam quality than Gaussian appearance because there are many cases in which a beam can look Gaussian, yet have an M 2 value far from unity. [1]