enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]

  3. Project Euler - Wikipedia

    en.wikipedia.org/wiki/Project_Euler

    The first Project Euler problem is Multiples of 3 and 5. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. It is a 5% rated problem, indicating it is one of the easiest on the site.

  4. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    The optimization version is NP-hard, but can be solved efficiently in practice. [4] The partition problem is a special case of two related problems: In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S).

  5. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.

  6. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.

  7. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory , the maximum weight matching problem is the problem of finding, in a weighted graph , a matching in which the sum of weights is maximized.

  8. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    Determine the numbers not on the left column by taking the sum of the number to the left and the number above the number to the left, that is, the number diagonally up and left of the number we are calculating (,, +,)

  9. Erdős–Szemerédi theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Szemerédi_theorem

    The sum-product conjecture informally says that one of the sum set or the product set of any set must be nearly as large as possible. It was originally conjectured by Erdős in 1974 to hold whether A is a set of integers, reals, or complex numbers. [3] More precisely, it proposes that, for any set A ⊂ ℂ, one has