enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multivariate probit model - Wikipedia

    en.wikipedia.org/wiki/Multivariate_probit_model

    In statistics and econometrics, the multivariate probit model is a generalization of the probit model used to estimate several correlated binary outcomes jointly. For example, if it is believed that the decisions of sending at least one child to public school and that of voting in favor of a school budget are correlated (both decisions are binary), then the multivariate probit model would be ...

  3. Probit model - Wikipedia

    en.wikipedia.org/wiki/Probit_model

    Gibbs sampling of a probit model is possible with the introduction of normally distributed latent variables z, which are observed as 1 if positive and 0 otherwise. This approach was introduced in Albert and Chib (1993), [5] which demonstrated how Gibbs sampling could be applied to binary and polychotomous response models within a Bayesian ...

  4. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    He suggests a two-stage estimation method to correct the bias. The correction uses a control function idea and is easy to implement. Heckman's correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model.

  5. Multinomial probit - Wikipedia

    en.wikipedia.org/wiki/Multinomial_probit

    The multinomial probit model is a statistical model that can be used to predict the likely outcome of an unobserved multi-way trial given the associated explanatory variables. In the process, the model attempts to explain the relative effect of differing explanatory variables on the different outcomes.

  6. Discrete choice - Wikipedia

    en.wikipedia.org/wiki/Discrete_choice

    In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by ...

  7. Jonckheere's trend test - Wikipedia

    en.wikipedia.org/wiki/Jonckheere's_Trend_Test

    This may be verified by substituting 11 mph in place of 12 mph in the Bumped sample, and 19 mph in place of 20 mph in the Smashed and re-computing the test statistic. From tables with k = 3, and m = 4, the critical S value for α = 0.05 is 36 and thus the result would be declared statistically significant at this level.

  8. Choice modelling - Wikipedia

    en.wikipedia.org/wiki/Choice_modelling

    Due to his use of the normal distribution Thurstone was unable to generalise this binary choice into a multinomial choice framework (which required the multinomial logistic regression rather than probit link function), hence why the method languished for over 30 years. However, in the 1960s through 1980s the method was axiomatised and applied ...

  9. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  1. Related searches ordered probit with sample selection design and control method template

    probit modelprobit model wikipedia