Search results
Results from the WOW.Com Content Network
The physics that affect the body in the sky or in space are different from the ground. For example, barometric pressure is different at different heights. At sea level barometric pressure is 760 mmHg; at 3,048 m above sea level, barometric pressure is 523 mmHg, and at 15,240 m, the barometric pressure is 87 mmHg.
Pressure as a function of the height above the sea level. The human body can perform best at sea level, [7] where the atmospheric pressure is 101,325 Pa or 1013.25 millibars (or 1 atm, by definition). The concentration of oxygen (O 2) in sea-level air is 20.9%, so the partial pressure of O 2 (pO 2) is 21.136 kilopascals (158.53 mmHg).
The pressure in the eye of the storm was 882 hPa (12.79 psi) at the time the image was taken. Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate. Atmospheric pressure shows a diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides. This effect is strongest in ...
In mountaineering, the death zone refers to altitudes above which the pressure of oxygen is insufficient to sustain human life for an extended time span. This point is generally agreed as 8,000 m (26,000 ft), where atmospheric pressure is less than 356 millibars (10.5 inHg; 5.16 psi). [ 1 ]
The Armstrong limit or Armstrong's line is a measure of altitude above which atmospheric pressure is sufficiently low that water boils at the normal temperature of the human body. Exposure to pressure below this limit results in a rapid loss of consciousness, followed by a series of changes to cardiovascular and neurological functions, and ...
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
At atmospheric pressure, the body tissues are therefore normally saturated with nitrogen at 0.758 bar (569 mmHg). At increased ambient pressures due to depth or habitat pressurisation, a diver's lungs are filled with breathing gas at the increased pressure, and the partial pressures of the constituent gases will be increased proportionately.
The atmospheric pressure at the top of the stratosphere is roughly 1/1000 the pressure at sea level. It contains the ozone layer, which is the part of Earth's atmosphere that contains relatively high concentrations of that gas. The stratosphere defines a layer in which temperatures rise with increasing altitude.