Search results
Results from the WOW.Com Content Network
The Euclidean algorithm was the first integer relation algorithm, which is a method for finding integer relations between commensurate real numbers. Several novel integer relation algorithms have been developed, such as the algorithm of Helaman Ferguson and R.W. Forcade (1979) [ 49 ] and the LLL algorithm .
Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2. A more efficient method is the Euclidean algorithm, a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder) of a by b.
For this reason, methods have been designed to modify Euclid's algorithm for working only with polynomials over the integers. They consist of replacing the Euclidean division, which introduces fractions, by a so-called pseudo-division, and replacing the remainder sequence of the Euclid's algorithm by so-called pseudo-remainder sequences (see ...
A Euclidean domain is an integral domain which can be endowed with at least one Euclidean function. A particular Euclidean function f is not part of the definition of a Euclidean domain, as, in general, a Euclidean domain may admit many different Euclidean functions. In this context, q and r are called respectively a quotient and a remainder of ...
Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...
This method of computation works always, but is not as simple as for integers because Euclidean division is more complicated. Therefore, a third method is often preferred for hand-written computations. It consists in remarking that the norm N(d) of the greatest common divisor of a and b is a common divisor of N(a), N(b), and N(a + b).
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.