enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Oak National Academy KS3 Maths- lesson-1-in-perimeter ...

    en.wikipedia.org/wiki/File:Oak_National_Academy...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  3. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    In geometry, a trapezoid (/ ˈ t r æ p ə z ɔɪ d /) in North American English, or trapezium (/ t r ə ˈ p iː z i ə m /) in British English, [1] [2] is a quadrilateral that has at least one pair of parallel sides.

  4. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    The area of an isosceles (or any) trapezoid is equal to the average of the lengths of the base and top (the parallel sides) times the height. In the adjacent diagram, if we write AD = a , and BC = b , and the height h is the length of a line segment between AD and BC that is perpendicular to them, then the area K is

  5. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.

  6. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  7. Tangential trapezoid - Wikipedia

    en.wikipedia.org/wiki/Tangential_trapezoid

    The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    giving the basic form of Brahmagupta's formula. It follows from the latter equation that the area of a cyclic quadrilateral is the maximum possible area for any quadrilateral with the given side lengths. A related formula, which was proved by Coolidge, also gives the area of a general convex

  9. British flag theorem - Wikipedia

    en.wikipedia.org/wiki/British_flag_theorem

    The British flag theorem can be generalized into a statement about (convex) isosceles trapezoids.More precisely for a trapezoid with parallel sides and and interior point the following equation holds: