enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.

  3. Trigonal planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_planar_molecular...

    Molecules where the three ligands are not identical, such as H 2 CO, deviate from this idealized geometry. Examples of molecules with trigonal planar geometry include boron trifluoride (BF 3), formaldehyde (H 2 CO), phosgene (COCl 2), and sulfur trioxide (SO 3). Some ions with trigonal planar geometry include nitrate (NO − 3), carbonate (CO 2−

  4. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    The bond angle for water is 104.5°. Valence shell electron pair repulsion ( VSEPR ) theory ( / ˈ v ɛ s p ər , v ə ˈ s ɛ p ər / VESP -ər , [ 1 ] : 410 və- SEP -ər [ 2 ] ) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [ 3 ]

  6. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group T d, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules ...

  7. Phosgene - Wikipedia

    en.wikipedia.org/wiki/Phosgene

    The C=O distance is 1.18 Å, the C−Cl distance is 1.74 Å and the Cl−C−Cl angle is 111.8°. [10] Phosgene is a carbon oxohalide and it can be considered one of the simplest acyl chlorides, being formally derived from carbonic acid.

  8. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  9. Cobalt(II) chloride - Wikipedia

    en.wikipedia.org/wiki/Cobalt(II)_chloride

    Cobalt chloride is fairly soluble in water. Under atmospheric pressure, the mass concentration of a saturated solution of CoCl 2 in water is about 54% at the boiling point, 120.2 °C; 48% at 51.25 °C; 35% at 25 °C; 33% at 0 °C; and 29% at −27.8 °C. [4] Diluted aqueous solutions of CoCl 2 contain the species [Co(H 2 O) 6] 2+, besides ...