enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    The column rank of A is the dimension of the column space of A, while the row rank of A is the dimension of the row space of A. A fundamental result in linear algebra is that the column rank and the row rank are always equal. (Three proofs of this result are given in § Proofs that column rank = row rank, below.)

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Since row operations can affect linear dependence relations of the row vectors, such a basis is instead found indirectly using the fact that the column space of A T is equal to the row space of A. Using the example matrix A above, find A T and reduce it to row echelon form:

  4. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    The fact that two matrices are row equivalent if and only if they have the same row space is an important theorem in linear algebra. The proof is based on the following observations: Elementary row operations do not affect the row space of a matrix. In particular, any two row equivalent matrices have the same row space.

  5. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M ; and the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f ) and the nullity of f (the dimension of the kernel of f ).

  6. Rouché–Capelli theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché–Capelli_theorem

    The rank of a matrix is the number of nonzero rows in its reduced row echelon form. If the ranks of the coefficient matrix and the augmented matrix are different, then the last non zero row has the form [ 0 … 0 ∣ 1 ] , {\displaystyle [0\ldots 0\mid 1],} corresponding to the equation 0 = 1 .

  7. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .

  8. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    These row operations are labelled in the table as +, +. Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution.

  9. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    In practice, we can construct one specific rank factorization as follows: we can compute , the reduced row echelon form of .Then is obtained by removing from all non-pivot columns (which can be determined by looking for columns in which do not contain a pivot), and is obtained by eliminating any all-zero rows of .