enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    Matrix multiplication completed in 2n-1 steps for two n×n matrices on a cross-wired mesh. There are a variety of algorithms for multiplication on meshes . For multiplication of two n × n on a standard two-dimensional mesh using the 2D Cannon's algorithm , one can complete the multiplication in 3 n -2 steps although this is reduced to half ...

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    On currently available processors, a bit-wise shift instruction is usually (but not always) faster than a multiply instruction and can be used to multiply (shift left) and divide (shift right) by powers of two. Multiplication by a constant and division by a constant can be implemented using a sequence of shifts and adds or subtracts. For ...

  5. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...

  6. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The first to be discovered was Strassen's algorithm, devised by Volker Strassen in 1969 and often referred to as "fast matrix multiplication". [1] The optimal number of field operations needed to multiply two square n × n matrices up to constant factors is still unknown. This is a major open question in theoretical computer science.

  7. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]

  8. Conformable matrix - Wikipedia

    en.wikipedia.org/wiki/Conformable_matrix

    Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.

  9. Method of Four Russians - Wikipedia

    en.wikipedia.org/wiki/Method_of_Four_Russians

    In each of these cases it speeds up the algorithm by one or two logarithmic factors. The Method of Four Russians matrix inversion algorithm published by Bard is implemented in M4RI library for fast arithmetic with dense matrices over F 2. M4RI is used by SageMath and the PolyBoRi library. [1]

  1. Related searches multiplication by a constant in c++ 4 string array with two rows and 1 single

    long multiplication algorithmwhat is long multiplication